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INTRODUCTION

Recently, much has been done on the flow problems where

chemical reactions take place in the gaseous mixture.1-9 In

these types of flows, one must consider the chemical reactions

as well as the fluid dynamics simultaneously. Clarke5 has ob-

tained the linearized solution for a flow past a corner in a

reacting gas mixture, while Vincenti2 solved the problem of

nonequilibrium flow over a wavy wall and showed that the extra

drag due to nonequilibrium effects is positive. Li and Wang 9

have presented a linearized slender-body theory of dissociating

gas flows. But no numerical results had been worked out. This

paper will be concerned with some quantitative results of linear

slender-body theory. In particular, the drag of two cases will

be considered; namely, a circular cone and a parabolic spindle.

These results should be useful for the development of theories

with higher approximations. In fact the extra drag due to non-

equilibrium effects turns out to be quite appreciable in the

first case. For the case of the circular cone, the extra drag

is positive, while for the case of the parabolic spindle, the

extra drag is negative indicating that the nonequilibrium effects

decrease the total drag.
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GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

In the following we shall be concerned with flows where

the only chemical reactions taking place are molecular dis-

sociations and atomic recombinations. By ruling out ionization,

we are actually restricting ourselves to a certain temperature

range°(i0) Furthermore, we assume that viscosity, diffusion and

heat conduction of the gases are negligible. From this, the con-

tinuity equation for the mixture is

fL 0
(1)

where is the density of the mixture and 7 is the macroscopic

velocity vector of the mixture.

i. The dynamical equation of motion is

D I

Dt -1- P  (2)

L Here D is the substantial derivative and P is the pressure.
Dt

The energy equation for the mixture becomes

Dt Dt (3)

where is the specific enthalpy of the mixture. From the dyna-

mical equation of motion and the expression

(4)
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where H is defined as the stagnation enthalpy, the above energy

equation can also be written as

DH
BE (5)

From the thermodynamic point of view, we assume the different

1 gases in the mixture to be thermally perfect. Thus we can write

the thermal equation of state for a dissociating gas as

=(6)

where -E- is the molecular gas constant, T is the temperature

of the mixture and o( is the degree of dissociation defined as

I the mass fraction of gas dissociated. The caloric equation of

I state is

|e= e~ e e (el T)(7)

where e , the specific internal energy of the mixture, consists
of the specific internal energies of the participating species.

1For dissociating diatomic gases,

II

where e.. and e, are the specific internal energy of the mole-

cular and atomic species respectively. With the assumption that

the translational, rotational and vibrational degrees of freedom

are fully excited, and the contributions of energy from the other
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degrees of freedom are negligible, we can express the specific

internal energies derived from statistical thermodynamical con-

siderations as,

e L t z T + Xz o =d + x d (9)

e,= R:T (10)

eT,, e ' -I f(R-T (11)

where

ci - dissociation energy per unit mass of diatomic gas

universal gas constant

R-= gas constant per unit mass of i-species

Svl- =molecular weight of i-species

k'T

Planck's constant

= Boltzman's gas constant

= vibrational frequency

1 when i = I
= 0 when i =

and the subscript i may stand for I or 2 for the case of a

dissociating diatomic gas. In this case, the caloric equation

of state is

+R

(6 0 - cx + T + I (12)'
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The specific enthalpy is expressed by

A=[2+-~ f (e) 0()+ T -~+ Oc4 (13)

In the case of ideal dissociating gas, f (e)-

The continuity equation for the i-species can be written

as

+  .((14)

where Tj is the rate of mass product of i-species per unit

volume, or usually known as the chemical source term of i-species

and 7 is the macroscopic velocity of the i-species. For ex-

ample, in a dissociating gas, the conservation of atomic gas can

be expressed as

atA~ (15)

where A is the atomic mass rate production per unit volume, and

7 is the diffusion velocity vector of the atoms. In regions

outside the boundary layer or where the flow is inviscid, the

term involving VA can be neglected. Hence

DI ? (15a)

From consideration of chemical kinetics, the term on the right

hand side of the equation can be obtained. Following J.F. Clarke4 ,

we write, for the case of a diatomic, dissociating gas
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" % 1 f LKt VV.0 -) - : " K - - (16)

where and K,, are the dissociation and recombination rate

constants respectively. Also,

.= 4(, " ((17)

known as the characteristic reaction time, and

K Kt (18)

which can be related to the atom mass fraction under equilibrium

I conditions in some circumstances.

If we restrict ourselves to steady flow, the above governing

equations for inviscid, dissociating, diatomic gas with the stated

assumptions become

V'(e- ) 0 (19)

V) V -(20)

2.VH o (21)

P= (1+oW) i R"T (22)

7= (r C) (23)

= _(24)

=~~~~~~~~~ ( iiii I |i i iii |"
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The specific entropy, s, can be introduced by the equation

TO= 4#(-QS-/, dc< (25)

where is the difference of the chemical potentials of

the molecules and atoms.

can be related to 0( and 7 as 4,5

,. 1Oe C<K2 (26)

These equations can be combined to yield11

) - ' -(27)+"j

where

27 ) _ (28)

is the frozen speed of sound, and

(I~ ~ ~ ___P 'OP

In the above expression

1- (30)P f TJrX

is the specific heat at constant pressure and frozen composition

and

- -- ( )i, (31)

Ir
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is the volume expansion coefficient at constant pressure and

frozen composition. The problem now is to solve equations

(24) and (27) simultaneously, subject to the proper boundary

conditions; namely, that the flow be tangent to the body on

the surface of the body and that there be no chemical reaction

taking place between the gas and the body.

t Linearization

i For flow past slender bodies, the disturbances are very

small. To simplify the problem of steady flow of a simple

dissociating gas mathematically, we may assume the disturbances

to a free stream in chemical equilibrium to be small and pro-

ceed to linearize the equations. We assume that not only will

the perturbation velocities be small, but the deviations of

CK, 6k , te from their respective free stream values will

also be small. Let U , r and s be the non-dimensional per-

turbation velocity potential defined as

t=-- -I

Lr= (32)

In the linearization, we neglect terms involving squares or

products of the perturbation quantities. The validity of these

assumptions holds for slender bodies. With these approximations,
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equations (24) and (27) can be combined to giveI1

I++ + 4 --0 (33)

where

Me"

L "(34)

9 L
L

and

- (35)L

stands for the ratio of characteristic flow time and chemical

relaxation time. L is a suitable characteristic length of the

flow. Within the linearized theory, I I equation (33) can be

written as

-)7 -5 j ia + 0(36)

where the non-dimensional velocity potential 0 has been introduced.

The non-dimensional perturbation velocities are given as

4 (37)
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The solution of equation (36) subject to the linearized boundary

conditions has been solved by Li and Wang 9 by using the method of

1Laplace and Fourier Transforms.

I From the expression for ,the perturbation velocities,

surface pressure and hence the drag coefficient for slender bodies

1 can be obtained as 9

0 0

+ d) +, C 8>

I +eTf., (38)

Where S(x) denotes the cross sectional area of ;he body and should

cause no confusion with the specific entropy. The first four terms

are the same as those obtained by Ward and the last two terms are

purely due to non-equilibrium effect. The third term can be ob-

tained when specific body shapes are considered. In particular, for

bodies of revolution and omitting the base drag for bodies not

pointed at both ends, the expression for the drag 9 becomes
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r ii T

If 1

0 0 (39)

where cKo is the angle of attack, and

Mf.1A Me

The last two terms in the above expression (Eq. 39) gives the

II extra drag due to nonequilibrium effects. The relative importance

of the drag will be investigated for two cases; namely, the unyawed

circular cone and the parabolic spindle.

Examples

In the following examples, computations are based on the

values - 1.5 and ) = 1.35. Correspond

to these values, the equilibrium and frozen Mach numbers are 2.12

and 1.83 respectively.

Case a) Unyawed cone
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The profile of the cone is given by (see figure 1)

S-(40)

where is the semi-vertex angle of the cone. Hence,

-2 =7 V 0 (41)

Knowing S'(x) and S"(x) the drag of a cone in a simple dis-

sociating gas can be calculated from equation (39) by double

integration. For this case, denoting D(1 ) and D(2) as the drag

of the cone in an inert gas and the extra drag due to chemical
D"1)

reaction, the expression for L z turns out to be

, ~2 ,- 0 -

D a## -Tr~ El (42).Y~
-~ + ~-e ( 'I+I) -e______

+ P, NT+ (42)

The expression for can be also integrated and the

result obtained as

Tr 0  
(43)

Mis essentially the inverse characteristic

relaxation distance. For a model with length ) equal to the

characteristic relaxation distance, i.e., @ -I , the ratio
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has been calculated for b 50 to 300 at 50 inter-

vals. The result is given in table 1. For a model of fixed

length, the effect of chemical reaction is seen to decrease

rapidly for increasing . (Table 2).

Case b) Parabolic spindle at zero angle of attack (Fig. 2).

The profile of this body is given by the equation

+.R() W G- X)= S (I - 7(44)

Hence

) - 7(4 5 )

[
From the expression for drag given by equation (39), and noting

I that S'(1) 0,

, .2 % f4 ,j -- g -rJ

Z OR) S-j5 (0) -(v)]

_ ._ _ (___

e - -.2-4 s4

-(46)
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and

4 V)(47)

The ratio of for 1 is. shown in table 3. In

this case this ratio is independent of the slenderness ratio.

Conclusion

For the case of the cone, D ( 2 ) turns out to be positive

and is quite appreciable compared to D(1). This seems to be
in support with the reasoning in Kusukawa and Li's report;12

namely, the presence of chemical reaction will increase the en-

tropy just like in the case of vorticityo The ratio /D

for = increases quite rapidly for increasing semi-vertex

angle of the cone. In particular, the value already reaches 10%

for a cone of semi-vertex angle of between 150 and 200 This

result justifies the investigation of theories of non-equilibrium

flow with higher approximations. These higher order theories

are useful not only in the increase of accuracy, but also in

their applicability to a wider range of problems. For example,

by the higher order theories, we are able to extend the Mach

number range so as to approach the hypersonic case. The effects

of chemical reactions decreases very rapidly for a given model

if is increased as shown in table 2.
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In the case of a parabolic spindle, D(2) is negative and

is small compared to D(1). From thermodynamic considerations,

it has been shown in Ref. 12 that the extra drag caused by chemi-

cal equilibrium will be positive for a subsonic flow past a body.

In order to relate the subsonic and the supersonic cases for

slender pointed bodies, the following expression for the extra

drag obtained from reference 9 can be used

(1) ?-p -5§)L

ffzf x - (48)

for both supersonic and subsonic case. Since for sub-

sonic case and > for supersonic case, the sign within the

bracket is reversed for the two cases. Hence, for the same body,

if the subsonic drag due to chemical reactions is positive, its

counterpart in the supersonic case must be negative. It was

shown I that in a medium where chemical reaction is taking place,

disturbances are being damped. Hence, in a supersonic flow, the

wave drag in flow of a reacting gas past a body will be less than

that of a non-reacting gas. As pointed out at the end of refer-

ence 12, this phenomena would have to be included in the dis-

cussion of the extra drag from effects of chemical reaction. The

results on the parabolic spindle indicates that the decrease of

wave drag is sufficiently large to cause D(2) to be negative. Un-

like in the case of the cone, where only dissociation takes place,

in the case of parabolic spindle both dissociation and recombination
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occurs, In addition to this difference, the ratio A

in the latter case is independent of the slenderness ratio. For

a fixed , as in the case of the cone, the effects due to

chemical reaction decreases rapidly for increasing j , which

may be interpreted as the inverse characteristic relaxation dis-

tance. The calculations in this paper are based on 1.83

and f - 2.12 so that the linearized theory is applicable, The

results as indicated here may be quite different from the hypersonic

slender body behavior. For that purpose, higher order theories

with a higher Mach number range of applicability must await future

development.
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Figure 1: Unyawed Cone

Figure 2: Parabolic Spindle
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Table 1: Variation of D(2)/D(l) with & for an unyawed cone.

50 10' 150 200 250 300

D 4.3 6.2 8.6 12.1 17.7 29.7

Table 2: Variation of D( 2)/D(l) with for an unyawed cone.

!C,

1 0715 .715 7.15

- , 43 4.0 .1 .1 x 102

Ratio of D(2)/D(1)

for a
Table 3 parabolic spindle.

D_ .000109

.081



21

SYMBOLS USED

frozen speed of sound

ae equilibrium speed of sound

atomic mass rate production per unit volume

Cpf specific heat at constant pressure and frozen composition

D, drag

D drag of flow past a body in inert gas

extra drag due to chemical reaction

dissociation energy per unit mass of diatomic gas

e specific internal energy of the mixture

specific internal energy of the molecular species

e, specific internal energy of the atomic species
Sspecific enthalpy of the mixture

t7 Planck's constant

H stagnation enthalpy

k Boltzman's constant

Kf dissociation rate constant

K& recombination rate constant

L characteristic length in the flow

Hf. frozen free-stream Mach number

N4. equilibrium free-stream Mach number

P pressure of the mixture

R universal gas constant

R gas constant per unit mass of L-species
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Sradial distance on the body profiles

S specific entropy

S(x) cross sectional area of the body

t time

T temperature of the mixture

7 macroscopic velocity vector of the mixture

t macroscopic velocity vector of i-species

VA diffusion velocity vector of the atoms

CLr, &J' non-dimensional perturbation velocities

W. molecular weight of undissociated gas

VI molecular weight of the E-species

c, angle of attack

o degree of dissociation

OMe degree of dissociation at equilibrium flow

volume expansion coefficient at constant pressure
and frozen composition

or
semi-vertex angle for the circular cone slenderness

ratio of the parabolic spindle

ratio of characteristic flow time and chemical
relaxation time

characteristic reaction time

density of the mixture

vibrational frequency

>, (see equation 29)
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- / when i

Z when i"

/a, chemical potential of atoms

,aa chemical potential of molecules

=, L4=  M:-I

K- 4

SUBSCRIPTS

L" t translational

/L., rotational

vibrational

frozen

e. equilibrium

00 free-stream

Z molecular species

I atomic species

i. i-species
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